
We have included this appendix to save you the task of having to turn to secondary
material when writing 68000 assembly language programs. Since most
programmers are not interested in the encoding of instructions, details of
instruction encoding have been omitted (i.e., the actual op-code bit patterns).
Applications of some of the instructions have been provided to demonstrate how
they can be used in practice.

Instructions are listed by mnemonic in alphabetical order. The information
provided about each instruction is: its assembler syntax, its attributes (i.e., whether
it takes a byte, word, or longword operand), its description in words, the effect its
execution has on the condition codes, and the addressing modes it may take. The
effect of an instruction on the CCR is specified by the following codes:

U The state of the bit is undefined (i.e., its value cannot be predicted)
- The bit remains unchanged by the execution of the instruction
* The bit is set or cleared according to the outcome of the instruction.

Unless an addressing mode is implicit (e.g., NOP, RESET, RTS, etc.), the legal
source and destination addressing modes are specified by their assembly language
syntax. The following notation is used to describe the 68000's instruction set.

Dn, An Data and address register direct.

(An) Address register indirect.

(An)+, -(An) Address register indirect with post-incrementing or pre-
decrementing.

(d,An), (d,An,Xi) Address register indirect with displacement, and address
register indirect with indexing and a displacement.

ABS.W, ABS.L Absolute addressing with a 16-bit or a 32-bit address.

(d,PC), (d,PC,Xi) Program counter relative addressing with a 16-bit offset,
or with an 8-bit offset plus the contents of an index
register.

imm An immediate value (i.e., literal) which may be 16 or 32
bits, depending on the instruction.

1

The 68000's Instruction Set

2 The 68000's Instruction Set

Two notations are employed for address register indirect addressing. The
notation originally used to indicate address register indirect addressing has been
superseded. However, the Teesside 68000 simulator supports only the older form.

Old notation Current notation

d(An), d(An,Xi) (d,An), (d,An,Xi)
d(PC), d(PC,Xi) (d,PC), (d,PC,Xi)

ABCD Add decimal with extend
Operation: [destination]10 ← [source]10 + [destination]10 + [X]

Syntax: ABCD Dy,Dx
ABCD -(Ay),-(Ax)

Attributes: Size = byte

Description: Add the source operand to the destination operand along with
the extend bit, and store the result in the destination location.
The addition is performed using BCD arithmetic. The only legal
addressing modes are data register direct and memory to memory
with address register indirect using pre-decrementing.

Application: The ABCD instruction is used in chain arithmetic to add together
strings of BCD digits. Consider the addition of two nine-digit
numbers. Note that the strings are stored so that the least-
significant digit is at the high address.

LEA Number1,A0 A0 points at first string
LEA Number2,A1 A1 points at second string
MOVE #8,D0 Nine digits to add
MOVE #$04,CCR Clear X-bit and Z-bit of the CCR

LOOP ABCD -(A0),-(A1) Add a pair of digits
DBRA D0,LOOP Repeat until 9 digits added

Condition codes: X N Z V C
* U * U *

The Z-bit is cleared if the result is non-zero, and left unchanged
otherwise. The Z-bit is normally set by the programmer before
the BCD operation, and can be used to test for zero after a chain
of multiple-precision operations. The C-bit is set if a decimal
carry is generated.

3The 68000's Instruction Set

ADD Add binary
Operation: [destination] ← [source] + [destination]

Syntax: ADD <ea>,Dn
ADD Dn,<ea>

Attributes: Size = byte, word, longword

Description: Add the source operand to the destination operand and store the
result in the destination location.

Condition codes: X N Z V C
* * * * *

Source operand addressing modes

Destination operand addressing modes

ADDA Add address
Operation: [destination] ← [source] + [destination]

Syntax: ADDA <ea>,An

Attributes: Size = word, longword

Description: Add the source operand to the destination address register and
store the result in the destination address register. The source is
sign-extended before it is added to the destination. For example,
if we execute ADDA.W D3,A4 where A4 = 0000010016 and D3.W =
800216, the contents of D3 are sign-extended to FFFF800216 and
added to 0000010016 to give FFFF810216, which is stored in A4.

4 The 68000's Instruction Set

Application: To add to the contents of an address register and not update the
CCR. Note that ADDA.W D0,A0 is the same as LEA (A0,D0.W),A0.

Condition codes: X N Z V C
- - - - -
An ADDA operation does not affect the state of the CCR.

Source operand addressing modes

ADDI Add immediate
Operation: [destination] ← <literal> + [destination]

Syntax: ADDI #<data>,<ea>

Attributes: Size = byte, word, longword

Description: Add immediate data to the destination operand. Store the result
in the destination operand. ADDI can be used to add a literal
directly to a memory location. For example, ADDI.W #$1234,$2000
has the effect [M(200016)] ← [M(200016)] + 123416.

Condition codes: X N Z V C
* * * * *

Destination operand addressing modes

ADDQ Add quick
Operation: [destination] ← <literal> + [destination]

Syntax: ADDQ #<data>,<ea>

5The 68000's Instruction Set

Sample syntax: ADDQ #6,D3

Attributes: Size = byte, word, longword

Description: Add the immediate data to the contents of the destination operand.
The immediate data must be in the range 1 to 8. Word and
longword operations on address registers do not affect condition
codes. Note that a word operation on an address register affects
all bits of the register.

Application: ADDQ is used to add a small constant to the operand at the effective
address. Some assemblers permit you to write ADD and then choose
ADDQ automatically if the constant is in the range 1 to 8.

Condition codes: Z N Z V C
* * * * *

Note that the CCR is not updated if the destination operand is an
address register.

Destination operand addressing modes

ADDX Add extended
Operation: [destination] ← [source] + [destination] + [X]

Syntax: ADDX Dy,Dx
ADDX -(Ay),-(Ax)

Attributes: Size = byte, word, longword

Description: Add the source operand to the destination operand along with
the extend bit, and store the result in the destination location.
The only legal addressing modes are data register direct and
memory to memory with address register indirect using pre-
decrementing.

Application: The ADDX instruction is used in chain arithmetic to add together
strings of bytes (words or longwords). Consider the addition of

6 The 68000's Instruction Set

two 128-bit numbers, each of which is stored as four consecutive
longwords.

LEA Number1,A0 A0 points at first number
LEA Number2,A1 A1 points at second number
MOVE #3,D0 Four longwords to add
MOVE #$00,CCR Clear X-bit and Z-bit of the CCR

LOOP ADDX -(A0),-(A1) Add pair of numbers
DBRA D0,LOOP Repeat until all added

Condition codes: X N Z V C
* * * * *

The Z-bit is cleared if the result is non-zero, and left unchanged
otherwise. The Z-bit can be used to test for zero after a chain of
multiple precision operations.

AND AND logical
Operation: [destination] ← [source].[destination]

Syntax: AND <ea>,Dn
AND Dn,<ea>

Attributes: Size = byte, word, longword

Description: AND the source operand to the destination operand and store
the result in the destination location.

Application: AND is used to mask bits. If we wish to clear bits 3 to 6 of data
register D7, we can execute AND #%10000111,D7. Unfortunately,
the AND operation cannot be used with an address register as
either a source or a destination operand. If you wish to perform a
logical operation on an address register, you have to copy the
address to a data register and then perform the operation there.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

7The 68000's Instruction Set

Destination operand addressing modes

ANDI AND immediate
Operation: [destination] ← <literal>.[destination]

Syntax: ANDI #<data>,<ea>

Attributes: Size = byte, word, longword

Description: AND the immediate data to the destination operand. The ANDI
permits a literal operand to be ANDed with a destination other
than a data register. For example, ANDI #$FE00,$1234 or
ANDI.B #$F0,(A2)+.

Condition codes: X N Z V C
- * * 0 0

Destination operand addressing modes

ANDI to CCR AND immediate to condition
code register

Operation: [CCR] ← <data>.[CCR]

Syntax: ANDI #<data>,CCR

Attributes: Size = byte

Description: AND the immediate data to the condition code register (i.e., the
least-significant byte of the status register).

8 The 68000's Instruction Set

Application: ANDI is used to clear selected bits of the CCR. For example,
ANDI #$FA,CCR clears the Z- and C-bits, i.e., XNZVC = X N 0 V 0.

Condition codes: X N Z V C
* * * * *
X: cleared if bit 4 of data is zero
N: cleared if bit 3 of data is zero
Z: cleared if bit 2 of data is zero
V: cleared if bit 1 of data is zero
C: cleared if bit 0 of data is zero

ANDI to SR AND immediate to status register
Operation: IF [S] = 1

 THEN
 [SR] ← <literal>.[SR]
 ELSE TRAP

Syntax: ANDI #<data>,SR

Attributes: Size = word

Description: AND the immediate data to the status register and store the
result in the status register. All bits of the SR are affected.

Application: This instruction is used to clear the interrupt mask, the S-bit, and
the T-bit of the SR. ANDI #<data>,SR affects both the status byte
of the SR and the CCR. For example, ANDI #$7FFF,SR clears the
trace bit of the status register, while ANDI #$7FFE,SR clears the
trace bit and also clears the carry bit of the CCR.

Condition codes: X N Z V C
* * * * *

ASL, ASR Arithmetic shift left/right
Operation: [destination] ← [destination] shifted by <count>

Syntax: ASL Dx,Dy
ASR Dx,Dy
ASL #<data>,Dy
ASR #<data>,Dy
ASL <ea>
ASR <ea>

9The 68000's Instruction Set

Attributes: Size = byte, word, longword

Description: Arithmetically shift the bits of the operand in the specified direc-
tion (i.e., left or right). The shift count may be specified in one of
three ways. The count may be a literal, the contents of a data
register, or the value 1. An immediate (i.e., literal) count permits
a shift of 1 to 8 places. If the count is in a register, the value is
modulo 64 (i.e., 0 to 63). If no count is specified, one shift is made
(i.e., ASL <ea> shifts the contents of the word at the effective
address one place left).

The effect of an arithmetic shift left is to shift a zero into the
least-significant bit position and to shift the most-significant bit
out into both the X- and the C-bits of the CCR. The overflow bit
of the CCR is set if a sign change occurs during shifting (i.e., if
the most-significant bit changes value during shifting).

The effect of an arithmetic shift right is to shift the least-
significant bit into both the X- and C-bits of the CCR. The most-
significant bit (i.e., the sign bit) is replicated to preserve the sign of
the number.

Application: ASL multiplies a two�s complement number by 2. ASL is almost
identical to the corresponding logical shift, LSR. The only differ-
ence between ASL and LSL is that ASL sets the V-bit of the CCR if
overflow occurs, while LSL clears the V-bit to zero. An ASR divides
a two�s complement number by 2. When applied to the contents
of a memory location, all 68000 shift operations operate on a word.

Condition codes: X N Z V C
* * * * *
The X-bit and the C-bit are set according to the last bit shifted out
of the operand. If the shift count is zero, the C-bit is cleared. The
V-bit is set if the most-significant bit is changed at any time
during the shift operation and cleared otherwise.

10 The 68000's Instruction Set

Destination operand addressing modes

Bcc Branch on condition cc
Operation: If cc = 1 THEN [PC] ← [PC] + d

Syntax: Bcc <label>

Sample syntax: BEQ Loop_4
BVC *+8

Attributes: BEQ takes an 8-bit or a 16-bit offset (i.e., displacement).

Description: If the specified logical condition is met, program execution
continues at location [PC] + displacement, d. The displacement is
a two�s complement value. The value in the PC corresponds to
the current location plus two. The range of the branch is -126 to
+128 bytes with an 8-bit offset, and -32K to +32K bytes with a 16-
bit offset. A short branch to the next instruction is impossible,
since the branch code 0 indicates a long branch with a 16-bit
offset. The assembly language form BCC *+8 means branch to the
point eight bytes from the current PC if the carry bit is clear.

BCC branch on carry clear C
BCS branch on carry set C
BEQ branch on equal Z
BGE branch on greater than or equal N.V + N.V
BGT branch on greater than N.V.Z + N.V.Z
BHI branch on higher than C.Z
BLE branch on less than or equal Z + N.V + N.V
BLS branch on lower than or same C + Z
BLT branch on less than N.V + N.V
BMI branch on minus (i.e., negative) N
BNE branch on not equal Z
BPL branch on plus (i.e., positive) N
BVC branch on overflow clear V
BVS branch on overflow set V

Note that there are two types of conditional branch instruction:

11The 68000's Instruction Set

those that branch on an unsigned condition and those that branch
on a signed condition. For example, $FF is greater than $10 when
the numbers are regarded as unsigned (i.e., 255 is greater than
16). However, if the numbers are signed, $FF is less than $10 (i.e.,
-1 is less than 16).

The signed comparisons are:

BGE branch on greater than or equal
BGT branch on greater than
BLE branch on lower than or equal
BLT branch on less than

The unsigned comparisons are:

BHS BCC branch on higher than or same
BHI branch on higher than
BLS branch on lower than or same
BLO BCS branch on less than

The official mnemonics BCC (branch on carry clear) and BCS (branch
on carry set) can be renamed as BHS (branch on higher than or
same) and BLO (branch on less than), respectively. Many 68000
assemblers support these alternative mnemonics.

Condition codes: X N Z V C
- - - - -

BCHG Test a bit and change
Operation: [Z] ← <bit number> OF [destination]

<bit number> OF [destination] ← <bit number> OF [destination]

Syntax: BCHG Dn,<ea>
BCHG #<data>,<ea>

Attributes: Size = byte, longword

Description: A bit in the destination operand is tested and the state of the
specified bit is reflected in the condition of the Z-bit in the CCR.
After the test operation, the state of the specified bit is changed
in the destination. If a data register is the destination, then the bit
numbering is modulo 32, allowing bit manipulation of all bits in
a data register. If a memory location is the destination, a byte is

12 The 68000's Instruction Set

read from that location, the bit operation performed using the bit
number modulo 8, and the byte written back to the location.
Note that bit zero refers to the least-significant bit. The bit number
for this operation may be specified either statically by an
immediate value or dynamically by the contents of a data register.

Application: If the operation BCHG #4,$1234 is carried out and the contents of
memory location $1234 are 101010102, bit 4 is tested. It is a 0 and
therefore the Z-bit of the CCR is set to 1. Bit 4 of the destination
operand is changed and the new contents of location 123416 are
101110102.

Condition codes: X N Z V C
- - * - -
Z: set if the bit tested is zero, cleared otherwise.

Destination operand addressing modes

Note that data register direct (i.e., Dn) addressing uses a longword
operand, while all other modes use a byte operand.

BCLR Test a bit and clear
Operation: [Z] ← <bit number> OF [destination]

<bit number> OF [destination] ← 0

Syntax: BCLR Dn,<ea>
BCLR #<data>,<ea>

Attributes: Size = byte, longword

Description: A bit in the destination operand is tested and the state of the
specified bit is reflected in the condition of the Z-bit in the
condition code. After the test, the state of the specified bit is
cleared in the destination. If a data register is the destination, the
bit numbering is modulo 32, allowing bit manipulation of all bits
in a data register. If a memory location is the destination, a byte
is read from that location, the bit operation performed using the
bit number modulo 8, and the byte written back to the location.

13The 68000's Instruction Set

Bit zero refers to the least-significant bit. The bit number for this
operation may be specified either by an immediate value or
dynamically by the contents of a data register.

Application: If the operation BCLR #4,$1234 is carried out and the contents of
memory location $1234 are 111110102, bit 4 is tested. It is a 1 and
therefore the Z-bit of the CCR is set to 0. Bit 4 of the destination
operand is cleared and the new contents of $1234 are: 111010102.

Condition codes: X N Z V C
- - * - -
Z: set if the bit tested is zero, cleared otherwise.

Destination operand addressing modes

Note that data register direct (i.e., Dn) addressing uses a longword
operand, while all other modes use a byte operand.

BRA Branch always
Operation: [PC] ← [PC] + d

Syntax: BRA <label>
BRA <literal>

Attributes: Size = byte, word

Description: Program execution continues at location [PC] + d. The displace-
ment, d, is a two�s complement value (8 bits for a short branch
and 16 bits for a long branch). The value in the PC corresponds
to the current location plus two. Note that a short branch to the
next instruction is impossible, since the branch code 0 is used to
indicate a long branch with a 16-bit offset.

Application: A BRA is an unconditional relative jump (or goto). You use a BRA
instruction to write position independent code, because the
destination address (branch target address) is specified with respect
to the current value of the PC. A JMP instruction does not produce
position independent code.

14 The 68000's Instruction Set

Condition codes: X N Z V C
- - - - -

BSET Test a bit and set
Operation: [Z] ← <bit number> OF [destination]

<bit number> OF [destination] ← 1

Syntax: BSET Dn,<ea>
BSET #<data>,<ea>

Attributes: Size = byte, longword

Description: A bit in the destination operand is tested and the state of the
specified bit is reflected in the condition of the Z-bit of the
condition code. After the test, the specified bit is set in the
destination. If a data register is the destination then the bit
numbering is modulo 32, allowing bit manipulation of all bits in
a data register. If a memory location is the destination, a byte is
read from that location, the bit operation performed using bit
number modulo 8, and the byte written back to the location. Bit
zero refers to the least-significant bit. The bit number for this
operation may be specified either by an immediate value or
dynamically by the contents of a data register.

Condition codes: X N Z V C
- - * - -
Z: set if the bit tested is zero, cleared otherwise.

Destination operand addressing mode for BSET Dn,<ea> form

Note that data register direct (i.e., Dn) addressing uses a longword
operand, while all other modes use a byte operand.

BSR Branch to subroutine
Operation: [SP] ← [SP] - 4; [M([SP])] ← [PC]; [PC] ← [PC] + d

15The 68000's Instruction Set

Syntax: BSR <label>
BSR <literal>

Attributes: Size = byte, word

Description: The longword address of the instruction immediately following
the BSR instruction is pushed onto the system stack pointed at by
A7. Program execution then continues at location [PC] +
displacement. The displacement is an 8-bit two�s complement
value for a short branch, or a 16-bit two�s complement value for
a long branch. The value in the PC corresponds to the current
location plus two. Note that a short branch to the next instruction
is impossible, since the branch code 0 is used to indicate a long
branch with a 16-bit offset.

Application: BSR is used to call a procedure or a subroutine. Since it provides
relative addressing (and therefore position independent code),
its use is preferable to JSR.

Condition codes: X N Z V C
- - - - -

BTST Test a bit
Operation: [Z] ← <bit number> OF [destination]

Syntax: BTST Dn,<ea>
BTST #<data>,<ea>

Attributes: Size = byte, longword

Description: A bit in the destination operand is tested and the state of the
specified bit is reflected in the condition of the Z-bit in the CCR.
The destination is not modified by a BTST instruction. If a data
register is the destination, then the bit numbering is modulo 32,
allowing bit manipulation of all bits in a data register. If a memory
location is the destination, a byte is read from that location, the
bit operation performed. Bit 0 refers to the least-significant bit.
The bit number for this operation may be specified either statically
by an immediate value or dynamically by the contents of a data
register.

Condition codes: X N Z V C
- - * - -
Z: set if the bit tested is zero, cleared otherwise.

16 The 68000's Instruction Set

Destination operand addressing modes for BTST Dn,<ea> form

Note that data register direct (i.e., Dn) addressing uses a longword
operand, while all other modes use a byte operand.

CHK Check register against bounds
Operation: IF [Dn] < 0 OR [Dn] > [<ea>] THEN TRAP

Syntax: CHK <ea>,Dn

Attributes: Size = word

Description: The contents of the low-order word in the data register specified
in the instruction are examined and compared with the upper
bound at the effective address. The upper bound is a two�s
complement integer. If the data register value is less than zero or
greater than the upper bound contained in the operand word,
then the processor initiates exception processing.

Application: The CHK instruction can be used to test the bounds of an array
element before it is used. By performing this test, you can make
certain that you do not access an element outside an array.
Consider the following fragment of code:

MOVE.W subscript,D0 Get subscript to test
CHK #max_bound,D0 Test subscript against 0 and upper bound
* TRAP on error ELSE continue if ok

Condition codes: X N Z V C
- * U U U
N: set if [Dn] < 0; cleared if [Dn] > [<ea>]; undefined otherwise.

Source operand addressing modes

17The 68000's Instruction Set

CLR Clear an operand
Operation: [destination] ← 0

Syntax: CLR <ea>

Sample syntax: CLR (A4)+

Attributes: Size = byte, word, longword

Description: The destination is cleared � loaded with all zeros. The CLR in-
struction can't be used to clear an address register. You can use
SUBA.L A0,A0 to clear A0. Note that a side effect of CLR�s imple-
mentation is a read from the specified effective address before the
clear (i.e., write) operation is executed. Under certain circum-
stances this might cause a problem (e.g., with write-only memory).

Condition codes: X N Z V C
- 0 1 0 0

Source operand addressing modes

CMP Compare
Operation: [destination] - [source]

Syntax: CMP <ea>,Dn

Sample syntax: CMP (Test,A6,D3.W),D2

Attributes: Size = byte, word, longword

Description: Subtract the source operand from the destination operand and
set the condition codes accordingly. The destination must be a
data register. The destination is not modified by this instruction.

Condition codes: X N Z V C
- * * * *

18 The 68000's Instruction Set

Source operand addressing modes

CMPA Compare address
Operation: [destination] - [source]

Syntax: CMPA <ea>,An

Sample syntax: CMPA.L #$1000,A4
CMPA.W (A2)+,A6
CMPA.L D5,A2

Attributes: Size = word, longword

Description: Subtract the source operand from the destination address register
and set the condition codes accordingly. The address register is
not modified. The size of the operation may be specified as word
or longword. Word length operands are sign-extended to 32 bits
before the comparison is carried out.

Condition codes: X N Z V C
- * * * *

Source operand addressing modes

CMPI Compare immediate
Operation: [destination] - <immediate data>

Syntax: CMPI #<data>,<ea>

Attributes: Size = byte, word, longword

19The 68000's Instruction Set

Description: Subtract the immediate data from the destination operand and
set the condition codes accordingly � the destination is not
modified. CMPI permits the comparison of a literal with memory.

Condition codes: X N Z V C
- * * * *

Destination operand addressing modes

CMPM Compare memory with memory
Operation: [destination] - [source]

Syntax: CMPM (Ay)+,(Ax)+

Attributes: Size = byte, word, longword

Sample syntax: CMPM.B (A3)+,(A4)+

Description: Subtract the source operand from the destination operand and
set the condition codes accordingly. The destination is not
modified by this instruction. The only permitted addressing mode
is address register indirect with post-incrementing for both source
and destination operands.

Application: Used to compare the contents of two blocks of memory. For
example:

* Compare two blocks of memory for equality
LEA Source,A0 A0 points to source block
LEA Destination,A1 A1 points to destination block
MOVE.W #Count-1,D0 Compare Count words

 RPT CMPM.W (A0)+,(A1)+ Compare pair of words
DBNE D0,RPT Repeat until all done
.
.

Condition codes: X N Z V C
- * * * *

20 The 68000's Instruction Set

DBcc Test condition, decrement, and branch
Operation: IF(condition false)

 THEN [Dn] ← [Dn] - 1 {decrement loop counter}
 IF [Dn] = -1 THEN [PC] ← [PC] + 2 {fall through to next instruction}
 ELSE [PC] ← [PC] + d {take branch}
 ELSE [PC] ← [PC] + 2 {fall through to next instruction}

Syntax: DBcc Dn,<label>

Attributes: Size = word

Description: The DBcc instruction provides an automatic looping facility and
replaces the usual decrement counter, test, and branch instruc-
tions. Three parameters are required by the DBcc instruction: a
branch condition (specified by �cc�), a data register that serves as
the loop down-counter, and a label that indicates the start of the
loop. The DBcc first tests the condition �cc�, and if �cc� is true the
loop is terminated and the branch back to <label> not taken.
The 14 branch conditions supported by Bcc are also supported
by DBcc, as well as DBF and DBT (F = false, and T = true). Note
that many assemblers permit the mnemonic DBF to be expressed
as DBRA (i.e., decrement and branch back).

It is important to appreciate that the condition tested by the DBcc
instruction works in the opposite sense to a Bcc, conditional branch,
instruction. For example, BCC means branch on carry clear,
whereas DBCC means continue (i.e., exit the loop) on carry clear.
That is, the DBcc condition is a loop terminator. If the termination
condition is not true, the low-order 16 bits of the specified data
register are decremented. If the result is -1, the loop is not taken
and the next instruction is executed. If the result is not -1, a
branch is made to �label�. Note that the label represents a 16-bit
signed value, permitting a branch range of -32K to +32K bytes.
Since the value in Dn decremented is 16 bits, the loop may be
executed up to 64K times.

We can use the instruction DBEQ, decrement and branch on zero,
to mechanize the high-level language construct REPEAT...UNTIL.

LOOP ... REPEAT
...
... [D0] := [D0] - 1
...
DBEQ D0,REPEAT UNTIL [D0] = - 1 OR [Z] = 1

21The 68000's Instruction Set

Application: Suppose we wish to input a block of 512 bytes of data (the data is
returned in register D1). If the input routine returns a value zero
in D1, an error has occurred and the loop must be exited.

LEA Dest,A0 Set up pointer to destination
MOVE.W #511,D0 512 bytes to be input

AGAIN BSR INPUT Get the data in D1
MOVE.B D1,(A0)+ Store it
DBEQ D0,AGAIN REPEAT until D1 = 0 OR 512 times

Condition codes: X N Z V C
- - - - -
Not affected

DIVS, DIVU Signed divide, unsigned divide
Operation: [destination] ← [destination]/[source]

Syntax: DIVS <ea>,Dn
DIVU <ea>,Dn

Attributes: Size = longword/word = longword result

Description: Divide the destination operand by the source operand and store
the result in the destination. The destination is a longword and
the source is a 16-bit value. The result (i.e., destination register) is
a 32-bit value arranged so that the quotient is the lower-order
word and the remainder is the upper-order word. DIVU performs
division on unsigned values, and DIVS performs division on two�s
complement values. An attempt to divide by zero causes an
exception. For DIVS, the sign of the remainder is always the same
as the sign of the dividend (unless the remainder is zero).

Attempting to divide a number by zero results in a divide-by-zero
exception. If overflow is detected during division, the operands
are unaffected. Overflow is checked for at the start of the opera-
tion and occurs if the quotient is larger than a 16-bit signed inte-
ger. If the upper word of the dividend is greater than or equal to
the divisor, the V-bit is set and the instruction terminated.

Application: Consider the division of D0 by D1, DIVU D1,D0, which results in:

[D0(0:15)] ← [D0(0:31)]/[D1(0:15)]
[D0(16:31)] ← remainder

22 The 68000's Instruction Set

Condition codes: X N Z V C
- * * * 0

The X-bit is not affected by a division. The N-bit is set if the
quotient is negative. The Z-bit is set if the quotient is zero. The V-
bit is set if division overflow occurs (in which case the Z- and N-
bits are undefined). The C-bit is always cleared.

Source operand addressing modes

EOR Exclusive OR logical
Operation: [destination] ← [source] ⊕ [destination]

Syntax: EOR Dn,<ea>

Sample syntax: EOR D3,-(A3)

Attributes: Size = byte, word, longword.

Description: EOR (exclusive or) the source operand with the destination
operand and store the result in the destination location. Note that
the source operand must be a data register and that the operation
EOR <ea>,Dn is not permitted.

Application: The EOR instruction is used to toggle (i.e., change the state of)
selected bits in the operand. For example, if [D0] = 00001111, and
[D1] = 10101010, the operation EOR.B D0,D1 toggles bits 0 to 3 of
D1 and results in [D1] = 10100101.

Condition codes: X N Z V C
- * * 0 0

Destination operand addressing modes

23The 68000's Instruction Set

EORI EOR immediate
Operation: [destination] ← <literal> ⊕ [destination]

Syntax: EORI #<data>,<ea>

Attributes: Size = byte, word, longword

Description: EOR the immediate data with the contents of the destination
operand. Store the result in the destination operand.

Condition codes: X N Z V C
- * * 0 0

Destination operand addressing modes

EORI to CCR EOR immediate to CCR

Operation: [CCR] ← <literal> ⊕ [CCR]

Syntax: EORI #<data>,CCR

Attributes: Size = byte

Description: EOR the immediate data with the contents of the condition code
register (i.e., the least-significant byte of the status register).

Application: Used to toggle bits in the CCR. For example, EORI #$0C,CCR
toggles the N- and Z-bits of the CCR.

Condition codes: X N Z V C
* * * * *
X:= toggled if bit 4 of data = 1; unchanged otherwise
N:= toggled if bit 3 of data = 1; unchanged otherwise
Z:= toggled if bit 2 of data = 1; unchanged otherwise
V:= toggled if bit 1 of data = 1; unchanged otherwise
C:= toggled if bit 0 of data = 1; unchanged otherwise

24 The 68000's Instruction Set

EORI to SR EOR immediate to status register
Operation: IF [S] = 1

 THEN
 [SR] ← <literal> ⊕ [SR]
 ELSE TRAP

Syntax: EORI #<data>,SR

Attributes: Size = word

Description: EOR (exclusive OR) the immediate data with the contents of the
status register and store the result in the status register. All bits
of the status register are affected.

Condition codes: X N Z V C
* * * * *
X:= toggled if bit 4 of data = 1; unchanged otherwise
N:= toggled if bit 3 of data = 1; unchanged otherwise
Z:= toggled if bit 2 of data = 1; unchanged otherwise
V:= toggled if bit 1 of data = 1; unchanged otherwise
C:= toggled if bit 0 of data = 1; unchanged otherwise

EXG Exchange registers
Operation: [Rx] ← [Ry]; [Ry] ← [Rx]

Syntax: EXG Rx,Ry

Sample syntax: EXG D3,D4
EXG D2,A0
EXG A7,D5

Attributes: Size = longword

Description: Exchange the contents of two registers. The size of the instruction
is a longword because the entire 32-bit contents of two registers
are exchanged. The instruction permits the exchange of address
registers, data registers, and address and data registers.

Application: One application of EXG is to load an address into a data register
and then process it using instructions that act on data registers.
Then the reverse operation can be used to return the result to the

25The 68000's Instruction Set

address register. Doing this preserves the original contents of the
data register.

Condition codes: X N Z V C
- - - - -

EXT Sign-extend a data register
Operation: [destination] ← sign-extended[destination]

Syntax: EXT.W Dn
EXT.L Dn

Attributes: Size = word, longword

Description: Extend the least-significant byte in a data register to a word, or
extend the least-significant word in a data register to a longword.
If the operation is word sized, bit 7 of the designated data register
is copied to bits (8:15). If the operation is longword sized, bit 15
is copied to bits (16:31).

Application: If [D0] = $12345678, EXT.W D0 results in 1234007816
If [D0] = $12345678, EXT.L D0 results in 0000567816

Condition codes: X N Z V C
- * * 0 0

ILLEGAL Illegal instruction

Operation: [SSP] ← [SSP] - 4; [M([SSP])] ← [PC];
[SSP] ← [SSP] - 2; [M([SSP])] ← [SR];
[PC] ← Illegal instruction vector

Syntax: ILLEGAL

Attributes: None

Description: The bit pattern of the illegal instruction, 4AFC16 causes the illegal
instruction trap to be taken. As in all exceptions, the contents of
the program counter and the processor status word are pushed
onto the supervisor stack at the start of exception processing.

26 The 68000's Instruction Set

Application: Any unknown pattern of bits read by the 68000 during an instruc-
tion read phase will cause an illegal instruction trap. The ILLEGAL
instruction can be thought of as an official illegal instruction. It
can be used to test the illegal instruction trap and will always be
an illegal instruction in any future enhancement of the 68000.

Condition codes: X N Z V C
- - - - -

JMP Jump (unconditionally)
Operation: [PC] ← destination

Syntax: JMP <ea>

Attributes: Unsized

Description: Program execution continues at the effective address specified by
the instruction.

Application: Apart from a simple unconditional jump to an address fixed at
compile time (i.e., JMP label), the JMP instruction is useful for
the calculation of dynamic or computed jumps. For example, the
instruction JMP (A0,D0.L) jumps to the location pointed at by
the contents of address register A0, offset by the contents of data
register D0. Note that JMP provides several addressing modes,
while BRA provides a single addressing mode (i.e., PC relative).

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

JSR Jump to subroutine
Operation: [SP] ← [SP] - 4; [M([SP])] ← [PC]

[PC] ← destination

27The 68000's Instruction Set

Syntax: JSR <ea>

Attributes: Unsized

Description: JSR pushes the longword address of the instruction immediately
following the JSR onto the system stack. Program execution then
continues at the address specified in the instruction.

Application: JSR (Ai) calls the procedure pointed at by address register Ai.
The instruction JSR (Ai,Dj) calls the procedure at the location
[Ai] + [Dj] which permits dynamically computed addresses.

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

LEA Load effective address
Operation: [An] ← <ea>

Syntax: LEA <ea>,An

Sample syntax: LEA Table,A0
LEA (Table,PC),A0
LEA (-6,A0,D0.L),A6
LEA (Table,PC,D0),A6

Attributes: Size = longword

Description: The effective address is computed and loaded into the specified
address register. For example, LEA (-6,A0,D0.W),A1 calculates
the sum of address register A0 plus data register D0.W sign-
extended to 32 bits minus 6, and deposits the result in address
register A1. The difference between the LEA and PEA instructions
is that LEA calculates an effective address and puts it in an ad-
dress register, while PEA calculates an effective address in the
same way but pushes it on the stack.

28 The 68000's Instruction Set

Application: LEA is a very powerful instruction used to calculate an effective
address. In particular, the use of LEA facilitates the writing of
position independent code. For example, LEA (TABLE,PC),A0
calculates the effective address of �TABLE� with respect to the PC
and deposits it in A0.

LEA (Table,PC),A0 Compute address of Table with respect to PC
MOVE (A0),D1 Pick up the first item in the table
. Do something with this item
MOVE D1,(A0) Put it back in the table
.
.

Table DS.B 100

Source operand addressing modes

Condition codes: X N Z V C
- - - - -

LINK Link and allocate

Operation: [SP] ← [SP] - 4; [M([SP])] ← [An];
[An] ← [SP]; [SP] ← [SP] + d

Syntax: LINK An,#<displacement>

Sample syntax: LINK A6,#-12

Attributes: Size = word

Description: The contents of the specified address register are first pushed
onto the stack. Then, the address register is loaded with the
updated stack pointer. Finally, the 16-bit sign-extended
displacement is added to the stack pointer. The contents of the
address register occupy two words on the stack. A negative
displacement must be used to allocate stack area to a procedure.
At the end of a LINK instruction, the old value of address register
An has been pushed on the stack and the new An is pointing at

29The 68000's Instruction Set

the base of the stack frame. The stack pointer itself has been
moved up by d bytes and is pointing at the top of the stack
frame. Address register An is called the frame pointer because it is
used to reference data on the stack frame. By convention,
programmers often use A6 as a frame pointer.

Application: The LINK and UNLK pair are used to create local workspace on the
top of a procedure�s stack. Consider the code:

Subrtn LINK A6,#-12 Create a 12-byte workspace
.
MOVE D3,(-8,A6) Access the stack frame via A6
.
.
UNLK A6 Collapse the workspace
RTS Return from subroutine

Condition codes: X N Z V C
- - - - -
The LINK instruction does not affect the CCR.

LSL, LSR Logical shift left/right

Operation: [destination] ← [destination] shifted by <count>

Syntax: LSL Dx,Dy
LSR Dx,Dy
LSL #<data>,Dy
LSR #<data>,Dy
LSL <ea>
LSR <ea>

Attributes: Size = byte, word, longword

Description: Logically shift the bits of the operand in the specified direction
(i.e., left or right). A zero is shifted into the input position and the
bit shifted out is copied into both the C- and the X-bit of the CCR.
The shift count may be specified in one of three ways. The count
may be a literal, the contents of a data register, or the value 1. An
immediate count permits a shift of 1 to 8 places. If the count is in
a register, the value is modulo 64 � from 0 to 63. If no count is
specified, one shift is made (e.g., LSL <ea> shifts the word at the
effective address one position left).

30 The 68000's Instruction Set

Application: If [D3.W] = 11001100101011102, the instruction LSL.W #5,D3
produces the result 10010101110000002. After the shift, both the
X-and C-bits of the CCR are set to 1 (since the last bit shifted out
was a 1).

Condition codes: X N Z V C
* * * 0 *
The X-bit is set to the last bit shifted out of the operand and is
equal to the C-bit. However, a zero shift count leaves the X-bit
unaffected and the C-bit cleared.

Destination operand addressing modes

MOVE Copy data from source to destination

Operation: [destination] ← [source]

Syntax: MOVE <ea>,<e>

Sample syntax: MOVE (A5),-(A2)
MOVE -(A5),(A2)+
MOVE #$123,(A6)+
MOVE Temp1,Temp2

31The 68000's Instruction Set

Attributes: Size = byte, word, longword

Description: Move the contents of the source to the destination location. The
data is examined as it is moved and the condition codes set
accordingly. Note that this is actually a copy command because
the source is not affected by the move. The move instruction has
the widest range of addressing modes of all the 68000�s
instructions.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

Destination operand addressing modes

MOVEA Move address
Operation: [An] ← [source]

Syntax: MOVEA <ea>,An

Attributes: Size = word, longword

Description: Move the contents of the source to the destination location. The
destination is an address register. The source must be a word or
longword. If it is a word, it is sign-extended to a longword. The
condition codes are not affected.

Application: The MOVEA instruction is used to load an address register (some
assemblers simply employ the MOVE mnemonic for both MOVE and
MOVEA). Note that the instruction LEA can often be used to perform
the same operation (e.g., MOVEA.L #$1234,A0 is the same as
LEA $1234,A0).

32 The 68000's Instruction Set

Take care because the MOVEA.W #$8000,A0 instruction sign-extends
the source operand to $FFFF8000 before loading it into A0,
whereas LEA $8000,A0 loads A0 with $00008000.

You should appreciate that the MOVEA and LEA instructions are
not interchangeable. The operation MOVEA (Ai),An cannot be
implemented by an LEA instruction, since MOVEA (Ai),An performs
a memory access to obtain the source operand, as the following
RTL demonstrates.

LEA (Ai),An = [An] ← [Ai]
MOVEA (Ai),An = [An] ← [M([Ai])]

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

MOVE to CCR Copy data to CCR from source
Operation: [CCR] ← [source]

Syntax: MOVE <ea>,CCR

Attributes: Size = word

Description: Move the contents of the source operand to the condition code
register. The source operand is a word, but only the low-order
byte contains the condition codes. The upper byte is neglected.
Note that MOVE <ea>,CCR is a word operation, but ANDI, ORI, and
EORI to CCR are all byte operations.

Application: The move to CCR instruction permits the programmer to preset
the CCR. For example, MOVE #0,CCR clears all the CCR�s bits.

Condition codes: X N Z V C
* * * * *

33The 68000's Instruction Set

Source operand addressing modes

MOVE from SR Copy data from SR to
destination

Operation: [destination] ← [SR]

Syntax: MOVE SR,<ea>

Attributes: Size = word

Description: Move the contents of the status register to the destination location.
The source operand, the status register, is a word. This instruction
is not privileged in the 68000, but is privileged in the 68010, 68020,
and 68030. Executing a MOVE SR,<ea> while in the user mode on
these processors results in a privilege violation trap.

Condition codes: X N Z V C
- - - - -

Destination operand addressing modes

MOVE to SR Copy data to SR from source
Operation: IF [S] = 1

 THEN [SR] ← [source]
ELSE TRAP

Syntax: MOVE <ea>,SR

Attributes: Size = word

34 The 68000's Instruction Set

Description: Move the contents of the source operand to the status register.
The source operand is a word and all bits of the status register
are affected.

Application: The MOVE to SR instruction allows the programmer to preset the
contents of the status register. This instruction permits the trace
mode, interrupt mask, and status bits to be modified. For example,
MOVE #$2700,SR moves 00100111 00000000 to the status register
which clears all bits of the CCR, sets the S-bit, clears the T-bit,
and sets the interrupt mask level to 7.

Condition codes: X N Z V C
* * * * *

Source operand addressing modes

MOVE USP Copy data to or from USP
Operation 1: IF [S] = 1 {MOVE USP,An form}

 THEN [USP] ← [An]
ELSE TRAP

Operation 2: IF [S] = 1 {MOVE An,USP form}
 THEN [An] ← [USP]
ELSE TRAP

Syntax 1: MOVE USP,An
Syntax 2: MOVE An,USP

Attributes: Size = longword

Description: Move the contents of the user stack pointer to an address register
or vice versa. This is a privileged instruction and allows the
operating system running in the supervisor state either to read
the contents of the user stack pointer or to set up the user stack
pointer.

Condition codes: X N Z V C
- - - - -

35The 68000's Instruction Set

MOVEM Move multiple registers
Operation 1 : REPEAT

 [destination_register] ← [source]
UNTIL all registers in list moved

Operation 2: REPEAT
 [destination] ← [source_register]
UNTIL all registers in list moved

Syntax 1: MOVEM <ea>,<register list>
Syntax 2: MOVEM <register list>,<ea>

Sample syntax: MOVEM.L D0-D7/A0-A6,$1234
MOVEM.L (A5),D0-D2/D5-D7/A0-A3/A6
MOVEM.W (A7)+,D0-D5/D7/A0-A6
MOVEM.W D0-D5/D7/A0-A6,-(A7)

Attributes: Size = word, longword

Description: The group of registers specified by <register list> is copied to
or from consecutive memory locations. The starting location is
provided by the effective address. Any combination of the 68000�s
sixteen address and data registers can be copied by a single MOVEM
instruction. Note that either a word or a longword can be moved,
and that a word is sign-extended to a longword when it is moved
(even if the destination is a data register).

When a group of registers is transferred to or from memory
(using an addressing mode other than pre-decrementing or post-
incrementing), the registers are transferred starting at the specified
address and up through higher addresses. The order of transfer
of registers is data register D0 to D7, followed by address register
A0 to A7.

For example, MOVEM.L D0-D2/D4/A5/A6,$1234 moves registers
D0,D1,D2,D4,A5,A6 to memory, starting at location $1234 (in
which D0 is stored) and moving to locations $1238, $123C,... Note
that the address counter is incremented by 2 or 4 after each move
according to whether the operation is moving words or
longwords, respectively.

If the effective address is in the pre-decrement mode (i.e.,
-(An)), only a register to memory operation is permitted. The
registers are stored starting at the specified address minus two
(or four for longword operands) and down through lower
addresses. The order of storing is from address register A7 to
address register A0, then from data register D7 to data register

36 The 68000's Instruction Set

D0. The decremented address register is updated to contain the
address of the last word stored.

If the effective address is in the post-increment mode (i.e.,
(An)+), only a memory to register transfer is permitted. The
registers are loaded starting at the specified address and up
through higher addresses. The order of loading is the inverse of
that used by the pre-decrement mode and is D0 to D7 followed
by A0 to A7. The incremented address register is updated to
contain the address of the last word plus two (or four for longword
operands).

Note that the MOVEM instruction has a side effect. An extra
bus cycle occurs for memory operands, and an operand at one
address higher than the last register in the list is accessed. This
extra access is an �overshoot� and has no effect as far as the
programmer is concerned. However, it could cause a problem if
the overshoot extended beyond the bounds of physical memory.
Once again, remember that MOVEM.W sign-extends words when
they are moved to data registers.

Application: This instruction is invariably used to save working registers on
entry to a subroutine and to restore them at the end of a
subroutine.

BSR Example
.
.

Example MOVEM.L D0-D5/A0-A3,-(SP) Save registers
.
.
Body of subroutine
.
.
MOVEM.L (SP)+,D0-D5/A0-A3 Restore registers
RTS Return

Condition codes: X N Z V C
- - - - -

Source operand addressing modes (memory to register)

37The 68000's Instruction Set

Destination operand addressing modes (register to memory)

MOVEP Move peripheral data
Operation: [destination] ← [source]

Syntax: MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx

Sample syntax: MOVEP D3,(Control,A0)
MOVEP (Input,A6),D5

Attributes: Size = word, longword

Description: The MOVEP operation moves data between a data register and a
byte-oriented memory mapped peripheral. The data is moved
between the specified data register and alternate bytes within the
peripheral�s address space, starting at the location specified and
incrementing by two. This instruction is designed to be used in
conjunction with 8-bit peripherals connected to the 68000's 16-bit
data bus. The high-order byte of the data register is transferred
first and the low-order byte transferred last. The memory address
is specified by the address register indirect mode with a 16-bit
offset. If the address is even, all transfers are to or from the high-
order half of the data bus. If the address is odd, all the transfers
are made to the low-order half of the data bus.

Application: Consider a memory-mapped peripheral located at address
$08 0001 which has four 8-bit internal registers mapped at
addresses $08 0001, $08 0003, $08 0005, and $08 0007. The
longword in data register D0 is to be transferred to this peripheral
by the following code.

LEA $080001,A0
MOVEP.L D0,0(A0)

This code results in the following actions:

38 The 68000's Instruction Set

[M(080001)] ← [D0(24:31)]
[M(080003)] ← [D0(16:23)]
[M(080005)] ← [D0(8:15)]
[M(080007)] ← [D0(0:7)]

Condition codes: X N Z C V
- - - - -

MOVEQ Move quick (copy a small literal to a
destination)

Operation: [destination] ← <literal>

Syntax: MOVEQ #<data>,Dn

Attributes: Size = longword

Description: Move the specified literal to a data register. The literal data is an
eight-bit field within the MOVEQ op-code and specifies a signed
value in the range -128 to +127. When the source operand is
transferred, it is sign-extended to 32 bits. Consequently, although
only 8 bits are moved, the MOVEQ instruction is a longword
operation.

Application: MOVEQ is used to load small integers into a data register. Beware
of its sign-extension. The two operations MOVE.B #12,D0 and
MOVEQ #12,D0 are not equivalent. The former has the effect
[D0(0:7)] ← 12, while the latter has the effect [D0(0:31)] ← 12 (with
sign-extension).

39The 68000's Instruction Set

Condition codes: X N Z V C
- * * 0 0

MULS, MULU Signed multiply, unsigned
multiply

Operation: [destination] ← [destination] * [source]

Syntax: MULS <ea>,Dn
MULU <ea>,Dn

Attributes: Size = word (the product is a longword)

Description: Multiply the 16-bit destination operand by the 16-bit source
operand and store the result in the destination. Both the source
and destination are 16-bit word values and the destination result
is a 32-bit longword. The product is therefore a correct product
and is not truncated. MULU performs multiplication with unsigned
values and MULS performs multiplication with two�s complement
values.

Application: MULU D1,D2 multiplies the low-order words of data registers D1
and D2 and puts the 32-bit result in D2. MULU #$1234,D3 multi-
plies the low-order word of D3 by the 16-bit literal $1234 and
puts the 32-bit result in D3.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

NBCD Negate decimal with sign extend
Operation: [destination]10 ← 0 − [destination]10 - [X]

Syntax: NBCD <ea>

40 The 68000's Instruction Set

Attributes: Size = byte

Description: The operand addressed as the destination and the extend bit in
the CCR are subtracted from zero. The subtraction is performed
using binary coded decimal (BCD) arithmetic. This instruction
calculates the ten�s complement of the destination if the X-bit is
clear, and the nine�s complement if X = 1. This is a byte-only
operation. Negating a BCD number (with X = 0) has the effect of
subtracting it from 10010.

Condition codes: X N Z V C
* U * U *
The Z-bit is cleared if the result is non-zero and is unchanged
otherwise. The C-bit is set if a decimal borrow occurs. The X-bit
is set to the same value as the C-bit.

Destination operand addressing modes

NEG Negate
Operation: [destination] ← 0 - [destination]

Syntax: NEG <ea>

Attributes: Size = byte, word, longword

Description: Subtract the destination operand from 0 and store the result in
the destination location. The difference between NOT and NEG
instructions is that NOT performs a bit-by-bit logical complemen-
tation, while a NEG performs a two�s complement arithmetic sub-
traction. All bits of the condition code register are modified by a
NEG operation. For example, if D3.B = 111001112, the logical op-
eration NEG.B D3 results in D3 = 000110012 (XNZVC=10001) and
NOT.B D3 = 000110002 (XNZVC=-0000).

Condition codes: X N Z V C
* * * * *
Note that the X-bit is set to the value of the C-bit.

41The 68000's Instruction Set

Destination operand addressing modes

NEGX Negate with extend
Operation: [destination] ← 0 - [destination] - [X]

Syntax: NEGX <ea>

Attributes: Size = byte, word, longword

Description: The operand addressed as the destination and the extend bit are
subtracted from zero. NEGX is the same as NEG except that the X-
bit is also subtracted from zero.

Condition codes: X N Z V C
* * * * *
The Z-bit is cleared if the result is non-zero and is unchanged
otherwise. The X-bit is set to the same value as the C-bit.

Destination operand addressing modes

NOP No operation
Operation: None

Syntax: NOP

Attributes: Unsized

Description: The no operation instruction, NOP performs no computation.
Execution continues with the instruction following the NOP
instruction. The processor's state is not modified by a NOP.

42 The 68000's Instruction Set

Application: NOPs can be used to introduce a delay in code. Some programmers
use them to provide space for patches � two or more NOPs can
later be replaced by branch or jump instructions to fix a bug. This
use of the NOP is seriously frowned upon, as errors should be
corrected by re-assembling the code rather than by patching it.

Condition codes: X N Z V C
- - - - -

NOT Logical complement
Operation: [destination] ← [destination]

Syntax: NOT <ea>

Attributes: Size = byte, word, longword

Description: Calculate the logical complement of the destination and store the
result in the destination. The difference between NOT and NEG is
that NOT performs a bit-by-bit logical complementation, while a
NEG performs a two�s complement arithmetic subtraction. More-
over, NEG updates all bits of the CCR, while NOT clears the V- and
C-bits, updates the N- and Z-bits, and doesn't affect the X-bit.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

OR OR logical
Operation: [destination] ← [source] + [destination]

Syntax: OR <ea>,Dn
OR Dn,<ea>

Attributes: Size = byte, word, longword

43The 68000's Instruction Set

Description: OR the source operand to the destination operand, and store the
result in the destination location.

Application: The OR instruction is used to set selected bits of the operand. For
example, we can set the four most-significant bits of a longword
operand in D0 by executing:

OR.L #$F0000000,D0

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

Destination operand addressing modes

ORI OR immediate
Operation: [destination] ← <literal> + [destination]

Syntax: ORI #<data>,<ea>

Attributes: Size = byte, word, longword

Description: OR the immediate data with the destination operand. Store the
result in the destination operand.

Condition codes: X N Z V C
- * * 0 0

Application: ORI forms the logical OR of the immediate source with the
effective address, which may be a memory location. For example,

ORI.B #%00000011,(A0)+

44 The 68000's Instruction Set

Destination operand addressing modes

ORI to CCR Inclusive OR immediate to CCR
Operation: [CCR] ← <literal> + [CCR]

Syntax: ORI #<data>,CCR

Attributes: Size = byte

Description: OR the immediate data with the condition code register (i.e., the
least-significant byte of the status register). For example, the Z
flag of the CCR can be set by ORI #$04,CCR.

Condition codes: X N Z V C
* * * * *
X is set if bit 4 of data = 1; unchanged otherwise
N is set if bit 3 of data = 1; unchanged otherwise
Z is set if bit 2 of data = 1; unchanged otherwise
V is set if bit 1 of data = 1; unchanged otherwise
C is set if bit 0 of data = 1; unchanged otherwise

ORI to SR Inclusive OR immediate to status
register

Operation: IF [S] = 1
 THEN
 [SR] ← <literal> + [SR]
 ELSE TRAP

Syntax: ORI #<data>,SR

Attributes: Size = word

Description: OR the immediate data to the status register and store the result
in the status register. All bits of the status register are affected.

45The 68000's Instruction Set

Application: Used to set bits in the SR (i.e., the S, T, and interrupt mask bits).
For example, ORI #$8000,SR sets bit 15 of the SR (i.e., the trace
bit).

Condition codes: X N Z V C
* * * * *
X is set if bit 4 of data = 1; unchanged otherwise
N is set if bit 3 of data = 1; unchanged otherwise
Z is set if bit 2 of data = 1; unchanged otherwise
V is set if bit 1 of data = 1; unchanged otherwise
C is set if bit 0 of data = 1; unchanged otherwise

PEA Push effective address
Operation: [SP] ← [SP] - 4; [M([SP])] ← <ea>

Syntax: PEA <ea>

Attributes: Size = longword

Description: The longword effective address specified by the instruction is
computed and pushed onto the stack. The difference between
PEA and LEA is that LEA calculates an effective address and puts it
in an address register, while PEA calculates an effective address
in the same way but pushes it on the stack.

Application: PEA calculates an effective address to be used later in address
register indirect addressing. In particular, it facilitates the writing
of position independent code. For example, PEA (TABLE,PC)
calculates the address of TABLE with respect to the PC and pushes
it on the stack. This address can be read by a procedure and then
used to access the data to which it points. Consider the example:

PEA Wednesday Push the parameter address on the stack
BSR Subroutine Call the procedure
LEA (4,SP),SP Remove space occupied by the parameter
.

Subroutine MOVEA.L (4,SP),A0 A0 points to parameter under return address
MOVE.W (A0),D2 Access the actual parameter � Wednesday
.
RTS

Condition codes: X N Z V C
- - - - -

46 The 68000's Instruction Set

Source operand addressing modes

RESET Reset external devices
Operation: IF [S] = 1 THEN

 Assert RESET* line
 ELSE TRAP

Syntax: RESET

Attributes: Unsized

Description: The reset line is asserted, causing all external devices connected
to the 68000�s RESET* output to be reset. The RESET instruction is
privileged and has no effect on the operation of the 68000 itself.
This instruction is used to perform a programmed reset of all
peripherals connected to the 68000's RESET* pin.

Condition codes: X N Z V C
- - - - -

ROL, ROR Rotate left/right (without extend)
Operation: [destination] ← [destination] rotated by <count>

Syntax: ROL Dx,Dy
ROR Dx,Dy
ROL #<data>,Dy
ROR #<data>,Dy
ROL <ea>
ROR <ea>

Attributes: Size = byte, word, longword

Description: Rotate the bits of the operand in the direction indicated. The
extend bit, X, is not included in the operation. A rotate operation
is circular in the sense that the bit shifted out at one end is shifted
into the other end. That is, no bit is lost or destroyed by a rotate

47The 68000's Instruction Set

operation. The bit shifted out is also copied into the C-bit of the
CCR, but not into the X-bit. The shift count may be specified in
one of three ways: the count may be a literal, the contents of a
data register, or the value 1. An immediate count permits a shift
of 1 to 8 places. If the count is in a register, the value is modulo
64, allowing a range of 0 to 63. If no count is specified, the word
at the effective address is rotated by one place (e.g., ROL <ea>).

Condition codes: X N Z V C
- * * 0 *
The X-bit is not affected and the C-bit is set to the last bit rotated
out of the operand (C is set to zero if the shift count is 0).

Destination operand addressing modes

ROXL, ROXR Rotate left/right with extend
Operation: [destination] ← [destination] rotated by <count>

Syntax: ROXL Dx,Dy
ROXR Dx,Dy
ROXL #<data>,Dy
ROXR #<data>,Dy
ROXL <ea>
ROXR <ea>

Attributes: Size = byte, word, longword

48 The 68000's Instruction Set

Description: Rotate the bits of the operand in the direction indicated. The
extend bit of the CCR is included in the rotation. A rotate
operation is circular in the sense that the bit shifted out at one
end is shifted into the other end. That is, no bit is lost or destroyed
by a rotate operation. Since the X-bit is included in the rotate, the
rotation is performed over 9 bits (.B), 17 bits (.W), or 33 bits (.L).
The bit shifted out is also copied into the C-bit of the CCR as well
as the X-bit. The shift count may be specified in one of three
ways: the count may be a literal, the contents of a data register,
or the value 1. An immediate count permits a shift of 1 to 8
places. If the count is in a register, the value is modulo 64 and the
range is from 0 to 63. If no count is specified, the word at the
specified effective address is rotated by one place (i.e., ROXL <ea>).

Condition codes: X N Z V C
* * * 0 *
The X- and the C-bit are set to the last bit rotated out of the
operand. If the rotate count is zero, the X-bit is unaffected and
the C-bit is set to the X-bit.

Destination operand addressing modes

RTE Return from exception
Operation: IF [S] = 1 THEN

 [SR] ← [M([SP])]; [SP] ← [SP] + 2
 [PC] ← [M([SP])]; [SP] ← [SP] + 4

 ELSE TRAP

49The 68000's Instruction Set

Syntax: RTE

Attributes: Unsized

Description: The status register and program counter are pulled from the stack.
The previous values of the SR and PC are lost. The RTE is used to
terminate an exception handler. Note that the behavior of the
RTE instruction depends on the nature of both the exception and
processor type. The 68010 and later models push more informa-
tion on the stack following an exception than the 68000. The
processor determines how much to remove from the stack.

Condition codes: X N Z V C
* * * * *
The CCR is restored to its pre-exception state.

RTR Return and restore condition codes
Operation: [CCR] ← [M([SP])]; [SP] ← [SP] + 2

[PC] ← [M([SP])]; [SP] ← [SP] + 4

Syntax: RTR

Attributes: Unsized

Description: The condition code and program counter are pulled from the
stack. The previous condition code and program counter are lost.
The supervisor portion of the status register is not affected.

Application: If you wish to preserve the CCR after entering a procedure, you
can push it on the stack and then retrieve it with RTR.

BSR Proc1 Call the procedure
. .
. .

Proc1 MOVE.W SR,-(SP) Save old CCR on stack
. .
. Body of procedure
. .
RTR Return and restore CCR (not SR!)

Condition codes: X N Z V C
* * * * *
The CCR is restored to its pre-exception state.

50 The 68000's Instruction Set

RTS Return from subroutine
Operation: [PC] ← [M([SP])]; [SP] ← [SP] + 4

Syntax: RTS

Attributes: Unsized

Description: The program counter is pulled from the stack and the previous
value of the PC is lost. RTS is used to terminate a subroutine.

Condition codes: X N Z V C
- - - - -

SBCD Subtract decimal with extend
Operation: [destination]10 ← [destination]10 - [source]10 - [X]

Syntax: SBCD Dy,Dx
SBCD -(Ay),-(Ax)

Attributes: Size = byte

Description: Subtract the source operand from the destination operand together
with the X-bit, and store the result in the destination. Subtraction
is performed using BCD arithmetic. The only legal addressing
modes are data register direct and memory to memory with
address register indirect using auto-decrementing.

Condition codes: X N Z V C
* U * U *
Z: Cleared if result is non-zero. Unchanged otherwise. The Z-bit
can be used to test for zero after a chain of multiple precision
operations.

Scc Set according to condition cc
Operation: IF cc = 1 THEN [destination] ← 111111112

 ELSE [destination] ← 000000002

Syntax: Scc <ea>

51The 68000's Instruction Set

Attributes: Size = byte

Description: The specified condition code is tested. If the condition is true, the
bits at the effective address are all set to one (i.e., $FF). Otherwise,
the bits at the effective address are set to zeros (i.e., $00).

SCC set on carry clear C
SCS set on carry set C
SEQ set on equal Z
SGE set on greater than or equal N.V + N.V
SGT set on greater than N.V.Z + N.V.Z
SHI set on higher than C.Z
SLE set on less than or equal Z + N.V + N.V
SLS set on lower than or same C + Z
SLT set on less than N.V + N.V
SMI set on minus (i.e., negative) N
SNE set on not equal Z
SPL set on plus (i.e., positive) N
SVC set on overflow clear V
SVS set on overflow set V
SF set on false (i.e., set never) 0
ST set on true (i.e., set always) 1

Condition codes: X N Z V C
- - - - -

Destination operand addressing modes

STOP Load status register and stop
Operation: IF [S] = 1 THEN

 [SR] ← <data>
 STOP
 ELSE TRAP

Syntax: STOP #<data>

Sample syntax: STOP #$2700
STOP #SetUp

52 The 68000's Instruction Set

Attributes: Unsized

Description: The immediate operand is copied into the entire status register
(i.e., both status byte and CCR are modified), and the program
counter advanced to point to the next instruction to be executed.
The processor then suspends all further processing and halts.
That is, the privileged STOP instruction stops the 68000.

The execution of instructions resumes when a trace, an interrupt,
or a reset exception occurs. A trace exception will occur if the
trace bit is set when the STOP instruction is encountered. If an
interrupt request arrives whose priority is higher than the current
processor priority, an interrupt exception occurs, otherwise the
interrupt request has no effect. If the bit of the immediate data
corresponding to the S-bit is clear (i.e., user mode selected),
execution of the STOP instruction will cause a privilege violation.
An external reset will always initiate reset exception processing.

Condition codes: X N Z V C
* * * * *
Set according to the literal.

SUB Subtract binary
Operation: [destination] ← [destination] - [source]

Syntax: SUB <ea>,Dn
SUB Dn,<ea>

Attributes: Size = byte, word, longword

Description: Subtract the source operand from the destination operand and
store the result in the destination location.

Condition codes: X N Z V C
* * * * *

Source operand addressing modes

53The 68000's Instruction Set

Destination operand addressing modes

SUBA Subtract address
Operation: [destination] ← [destination] - [source]

Syntax: SUBA <ea>,An

Attributes: Size = word, longword

Description: Subtract the source operand from the destination operand and
store the result in the destination address register. Word
operations are sign-extended to 32 bits prior to subtraction.

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

SUBI Subtract immediate
Operation: [destination] ← [destination] - <literal>

Syntax: SUBI #<data>,<ea>

Attributes: Size = byte, word, longword

Description: Subtract the immediate data from the destination operand. Store
the result in the destination operand.

Condition codes: X N Z V C
* * * * *

54 The 68000's Instruction Set

Destination operand addressing modes

SUBQ Subtract quick
Operation: [destination] ← [destination] - <literal>

Syntax: SUBQ #<data>,<ea>

Attributes: Size = byte, word, longword

Description: Subtract the immediate data from the destination operand. The
immediate data must be in the range 1 to 8. Word and longword
operations on address registers do not affect condition codes. A
word operation on an address register affects the entire 32-bit
address.

Condition codes: X N Z V C
* * * * *

Destination operand addressing modes

SUBX Subtract extended
Operation: [destination] ← [destination] - [source] - [X]

Syntax: SUBX Dx,Dy
SUBX -(Ax),-(Ay)

Attributes: Size = byte, word, longword

Description: Subtract the source operand from the destination operand along
with the extend bit, and store the result in the destination location.

55The 68000's Instruction Set

The only legal addressing modes are data register direct and
memory to memory with address register indirect using auto-
decrementing.

Condition codes: X N Z V C
* * * * *
Z: Cleared if the result is non-zero, unchanged otherwise. The Z-
bit can be used to test for zero after a chain of multiple precision
operations.

SWAP Swap register halves
Operation: [Register(16:31)] ← [Register(0:15)];

[Register(0:15)] ← [Register(16:31]

Syntax: SWAP Dn

Attributes: Size = word

Description: Exchange the upper and lower 16-bit words of a data register.

Application: The SWAP Dn instruction enables the higher-order word in a register
to take part in word operations by moving it into the lower-order
position. SWAP Dn is effectively equivalent to ROR.L Di,Dn, where
[Di] = 16. However, SWAP clears the C-bit of the CCR, whereas
ROR sets it according to the last bit to be shifted into the carry bit.

Condition codes: X N Z V C
- * * 0 0
The N-bit is set if most-significant bit of the 32-bit result is set
and cleared otherwise. The Z-bit is set if 32-bit result is zero and
cleared otherwise.

TAS Test and set an operand
Operation: [CCR] ← tested([operand]); [destination(7)] ← 1

Syntax: TAS <ea>

Attributes: Size = byte

Description: Test and set the byte operand addressed by the effective address
field. The N- and Z-bits of the CCR are updated accordingly. The

56 The 68000's Instruction Set

high-order bit of the operand (i.e., bit 7) is set. This operation is
indivisible and uses a read-modify-write cycle. Its principal
application is in multiprocessor systems.

Application: The TAS instruction permits one processor in a multiprocessor
system to test a resource (e.g., shared memory) and claim the
resource if it is free. The most-significant bit of the byte at the
effective address is used as a semaphore to indicate whether the
shared resource is free. The TAS instruction reads the semaphore
bit to find the state of the resource, and then sets the semaphore
to claim the resource (if it was free). Because the operation is
indivisible, no other processor can access the memory between
the testing of the bit and its subsequent setting.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

TRAP Trap
Operation: S ← 1;

[SSP] ← [SSP] - 4; [M([SSP])] ← [PC];
[SSP] ← [SSP] - 2; [M([SSP])] ← [SR];
[PC] ← vector

Syntax: TRAP #<vector>

Attributes: Unsized

Description: This instruction forces the processor to initiate exception
processing. The vector number used by the TRAP instruction is in
the range 0 to 15 and, therefore, supports 16 traps (i.e., TRAP #0
to TRAP #15).

Application: The TRAP instruction is used to perform operating system calls
and is system independent. That is, the effect of the call depends
on the particular operating environment. For example, the
University of Teesside 68000 simulator uses TRAP #15 to perform

57The 68000's Instruction Set

I/O. The ASCII character in D1.B is displayed by the following
sequence.

MOVE.B #6,D0 Set up the display a character parameter in D0
TRAP #15 Now call the operating system

Condition codes: X N Z V C
- - - - -

TRAPV Trap on overflow
Operation: IF V = 1 THEN:

 [SSP] ← [SSP] - 4; [M([SSP])] ← [PC];
 [SSP] ← [SSP] - 2; [M([SSP])] ← [SR];
 [PC] ← [M($01C)]
 ELSE no action

Syntax: TRAPV

Attributes: Unsized

Description: If the V-bit in the CCR is set, then initiate exception processing.
The exception vector is located at address 01C16. This instruction
is used in arithmetic operations to call the operating system if
overflow occurs.

Condition codes: X N Z V C
 - - - - -

TST Test an operand

Operation: [CCR] ← tested([operand])
i.e., [operand] - 0; update CCR

Syntax: TST <ea>

Attributes: Size = byte, word, longword

Description: The operand is compared with zero. No result is saved, but the
contents of the CCR are set according to the result. The effect of
TST <ea> is the same as CMPI #0,<ea> except that the CMPI in-
struction also sets/clears the V- and C-bits of the CCR.

58 The 68000's Instruction Set

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

UNLK Unlink
Operation: [SP] ← [An]; [An] ← [M([SP])]; [SP] ← [SP] + 4

Syntax: UNLK An

Attributes: Unsized

Description: The stack pointer is loaded from the specified address register
and the old contents of the stack pointer are lost (this has the
effect of collapsing the stack frame). The address register is then
loaded with the longword pulled off the stack.

Application: The UNLK instruction is used in conjunction with the LINK
instruction. The LINK creates a stack frame at the start of a
procedure, and the UNLK collapses the stack frame prior to a
return from the procedure.

Condition codes: X N Z V C
- - - - -

